首页> 外文OA文献 >Heat can flow from cold to hot in Microcanonical Thermodynamics of finite systems. The microscopic origin of condensation and phase separations
【2h】

Heat can flow from cold to hot in Microcanonical Thermodynamics of finite systems. The microscopic origin of condensation and phase separations

机译:在微正热力学中,热量可以从冷到热流动   有限系统。凝结和相分离的微观起源

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microcanonical Thermodynamics allows the application of Statistical Mechanicson one hand to closed finite and even small systems and on the other to thelargest,self-gravitating ones. However, one has to reconsider the fundamentalprinciples of Statistical Mechanics especially its key quantity, entropy.Whereas in conventional Thermostatistics the homogeneity and extensivity of thesystem and the concavity of its entropy S(E) are central conditions, these failfor the systems considered here. E.g. at phase separation the entropy S(E) isnecessarily convex to make e^{S(E)-E/T} bimodal in E (the two coexistingphases). This is so even for normal macroscopic systems with short-rangecoupling. As inhomogeneities and surface effects in particular cannot be scaledaway,one has to be careful with the standard arguments of splitting a systeminto two or bringing two systems into thermal contact. Not only the volume partof the entropy must be considered. When removing an external constraint inregions of a negative heat capacity, the system may even relax under a flow ofheat (energy) against the temperature slope. Thus Clausius formulation of theSecond Law: "Heat always flows from hot to cold" can be violated. Temperatureis not a necessary or fundamental control parameter of Thermostatistics. In thefinal sections of this paper the general microscopic mechanism leading tocondensation and to the convexity of the microcanonical entropy S(E) at phaseseparation is sketched. Also the microscopic conditions for the existence ornon-existence of a critical end-point of the phase-separation are discussed.This is explained for the liquid--gas and the solid--liquid transition.
机译:微规范热力学允许将统计力学应用于一方面封闭的甚至很小的系统,另一方面应用于最大的自重系统。然而,人们必须重新考虑统计力学的基本原理,特别是其关键量熵。在传统的热力学中,系统的同质性和可扩展性及其熵的凹度S(E)是中心条件,此处考虑的这些系统均不适用。例如。在相分离时,熵S(E)必须凸出,以使E ^ {S(E)-E / T}在E中成为双峰(两个共存相)。即使对于具有短程耦合的常规宏观系统而言,情况也是如此。由于特别不能均匀地消除不均匀性和表面效应,因此必须谨慎对待将系统分为两部分或使两个系统进行热接触的标准论点。不仅必须考虑熵的体积部分。当去除负热容量区域内的外部约束时,系统甚至可能在热流(能量)的作用下相对于温度斜率松弛。因此,克劳修斯对第二条法律的表述是:“热总是从热流向冷流”。温度不是恒温统计的必要或基本控制参数。在本文的最后部分中,概述了导致相分离时微观规范熵S(E)凝结和凸出的一般微观机理。还讨论了相分离关键终点存在与否的微观条件,这是针对液-气和固-液转变的解释。

著录项

  • 作者

    Gross, D. H. E.;

  • 作者单位
  • 年度 2004
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号